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A Appendix: Details on the model

A.1 Deriving the present value budget constraint

Here we derive the present value budget constraint, equation

(1−Θt)
Bt
Pt

=

∞∑
j=0

βjEt

(
Ct+j
Ct

)−1
τt+j . (A.4)

from Section 2. The exposition follows closely Uribe (2006). First we define B̃t := I−1t Bt+1,

yielding the flow budget constraint

B̃t = It−1B̃t−1(1−Θt)− Ptτt.

Multiplying the left and right-hand side with It(1 − Θt+1), and iterating forward j periods,

the budget constraint becomes

It+jB̃t+j(1−Θt+j+1)

=

(
j∏

h=0

It+h(1−Θt+h+1)

)
It−1B̃t−1(1−Θt)−

j∑
h=0

(
j∏

k=h

It+k(1−Θt+k+1)

)
Pt+hτt+h.

Now divide both sides by Pt+j+1 and multiply by (Ct+j+1/Ct)
−1

It+j
B̃t+j
Pt+j+1

(
Ct+j+1

Ct

)−1
(1−Θt+j+1)

=

(
j∏

h=0

It+h
Pt+h
Pt+h+1

(
Ct+h+1

Ct+h

)−1
(1−Θt+h+1)

)
It−1

B̃t−1
Pt

(1−Θt)

−
j∑

h=0

(
j∏

k=h

It+k
Pt+k
Pt+k+1

(
Ct+k+1

Ct+k

)−1
(1−Θt+k+1)

)(
Ct+h
Ct

)−1
τt+h.

Now take conditional time−t expectations Et on both sides, use the law of iterated expecta-

tions Et(·) = Et(Et+h(·)), h ≥ 0, and exploit that

βEtIt
Pt
Pt+1

(
Ct+1

Ct

)−1
(1−Θt+1) = 1

to arrive at

EtIt+j
B̃t+j
Pt+j+1

(
Ct+j+1

Ct

)−1
(1−Θt+j+1)

= β−j−1It−1
B̃t−1
Pt

(1−Θt)−
j∑

h=0

β−h−j−1Et

(
Ct+h
Ct

)−1
τt+h.
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Finally, multiply both sides by βj+1, take the limit j →∞ and use the transversality condition

lim
j→∞

βj+1EtIt+j

(
Ct+j+1

Ct

)−1
(1−Θt+j+1)

B̃t+j
Pt+j+1

= 0

to arrive at

(1−Θt)It−1
B̃t−1
Pt

=

∞∑
h=0

βhEt

(
Ct+h
Ct

)−1
τt+h.

Substituting back Bt = B̃t−1It−1 yields expression (A.4).

A.2 Linearizing the model

Here we provide details on the linearization of our model introduced in Section 2. Lower-case

letters denote log deviation of upper case letters from steady state, absolute deviation (scaled

by the price level) in case of public debt and taxes. We linearize around purchasing power

parity, zero inflation and zero default. Variables in the rest of the world are constant. Public

debt can be non-zero in steady state, parameterized by λ = τ/(1− β) ≥ 0.

Log-linearizing the Euler equation Rt = 1/{Etρt,t+1}, the labor supply curve Wt/Pt =

CtH
ϕ
t and the risk sharing condition Ct/C

∗ = Qt yields the conditions

ct = Etct+1 − (rt − Etπt+1) (A.5)

wrt := wt − pt = ct + ϕht, (A.6)

ct = qt, (A.7)

where πt := pt−pt−1 is CPI inflation. We approximate the real exchange rate Qt = (P ∗Et)/Pt
and the consumer price index Pt = ((1− ω)P 1−σ

H,t + ω(EtP ∗)1−σ)1/(1−σ) as

qt = et − pt (A.8)

pt = (1− ω)pH,t + ωet. (A.9)

Aggregate demand Yt = (PH,t/Pt)
−σ[(1− ω)Ct + ωQσt C

∗] can be approximated by

yt = −σ(pH,t − pt) + (1− ω)ct + ωσqt + µt,

where we introduce the demand shock µt that we use in Section 5. Combine this with (A.8)

and (A.9) to obtain

yt = (1− ω)ct + ωσ(2− ω)/(1− ω)qt + µt (A.10)

The aggregate supply block can be written as a New Keynesian Phillips curve

πH,t = βEtπH,t+1 + κmct, (A.11)
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where marginal costs MCt = Wt/PH,t are approximated as

mct = wt − pH,t = wrt − (pH,t − pt). (A.12)

Furthermore, production technology Yt = Ht can be approximated as

yt = ht. (A.13)

The policy rules Et = 1 and (R−1t /β) = Π−φH,t can be readily log-linearized as

et = 0 (A.14)

as well as

rt = φπH,t. (A.15)

The government’s flow budget constraint can be written as

β
(It)
−1

β

Bt+1

PH,t
= (1−Θt)

Bt
PH,t−1

PH,t−1
PH,t

− τt.

We log-linearize around I = 1/β as well as 1 − Θ = 1, we linearize around B/PH = λ and

T/PH = (1− β)λ to obtain

βbt+1 = (1− ψ)bt + λ(βit − πH,t − θt) + ηt, (A.16)

where we denote −θt := log(1−Θt), where we have used that the tax rule is already in linear

form: τt−τ = ψbt, and where we introduce the deficit shock ηt that we use in Section 5. Using

Euler equation (A.5), the bond price schedule 1 = ItEtρt,t+1(1−Θt+1) can be log-linearized

to

it = rt + Etθt+1. (A.17)

Finally, the condition Bt+1/PH,t = λ can be written in linearized terms as

bt+1 = 0, (A.18)

whereas the zero-default condition 1 − Θt = 1, by using that −θt = log(1 − Θt) as defined

above, becomes

θt = 0. (A.19)

A.3 Equations in Section 3

Here we derive the set of equations that are shown in Section 3. First, equations (A.16)-

(A.17) correspond to equations (3.5)-(3.6) from the text. The policy equations (A.14)-(A.15)

and (A.18)-(A.19) correspond to (3.7)-(3.8) in the text. Next, equation (3.4) is just the
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combination of equations (A.8) and (A.9). The three equations (3.1), (3.2) and (3.3) are

obtained as follows. Insert risk sharing (A.7) into goods market clearing (A.10) to obtain

equation (3.3). Rewrite the Euler equation (A.5) as

ct = Etct+1 − (rt − Et[(1− ω)πH.t+1 + ω∆et+1])

= Etct+1 − (rt − EtπH,t+1 −
ω

$
Et(∆yt+1 −∆µt+1)),

where we use (A.9) in the first line and (3.3) and (3.4) from the main text in the second line.

Combine (A.7) and (3.3) to obtain

ct =
1− ω
$

(yt − µt).

Use this expression to substitute for consumption in the Euler equation above to obtain

yt = Etyt+1 −$(rt − EtπH,t+1),

which is equation (3.1). Use equations (A.6), (A.7), (A.8), (A.9) and production technology

(A.13) to rewrite marginal cost

mcrt = wrt − (pH,t − pt) = ct + ϕht − (pH,t − pt) = ($−1 + ϕ)yt.

Insert this into the Phillips curve to obtain equation (3.2) in the text.

A.4 Robustness: Model with incomplete markets

Here we discuss the model extension from Section 5 where international financial markets are

incomplete. As explained in the text, we assume that private external debt, unlike public

debt, is in foreign currency.

There are two changes relative to the baseline model. First, the household budget con-

straint is replaced by∫ 1

0
PH,t(i)CH,t(i)di+

∫ 1

0
PF,t(i)CF,t(i)di+R−1t Dt+1 +R∗t

−1EtD∗t+1 + I−1t Bt+1

= WtHt +Dt + EtD∗t + (1−Θt)Bt + Yt − Ptτt.

As in the baseline model, Rt denotes the interest rate on a bond in domestic currency. Foreign

agents do not trade this bond in equilibrium, such that Dt+1 = 0 at all times. In contrast, for-

eign agents trade bonds denominated in their own currency, at price R∗t
−1. Finally, domestic

households hold risky government debt at price I−1t .

Second, as is well understood, incomplete assets markets induce non-stationarity (a unit

root) to small open economy models—the steady state level of D∗t+1 is indeterminate. To
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avoid this property, we follow Schmitt-Grohé and Uribe (2003) and introduce an endogenous

discount factor as (α > 0 a small positive number)

βt+1 = β
(

1 + α(D̃∗t+1 − λ∗)
)−1

βt, β0 = 1.

The discount factor depends on the country’s (aggregate) net foreign asset position, which in

equilibrium equals the net foreign asset position at the individual level (that is, D̃∗t+1 = D∗t+1).

By the arguments put forward in Schmitt-Grohé and Uribe (2003), this discount factor guar-

antees a net foreign asset position of λ∗ in steady state.

Household maximization implies the following set of Euler equations

1 = βt+1RtEtMt,t+1

1 = βt+1R
∗
tEtMt,t+1(Et+1/Et)

1 = βt+1ItEtMt,t+1(1−Θt+1).

where Mt,t+1 := (Ct+1/Ct)
−1(Pt/Pt+1). Using similar steps as in Section A.2 these can be

approximated as

ct = Etct+1 − (rt − Etπt+1 − αd̂∗t+1) (A.20)

rt = Etet+1 − et (A.21)

it = rt + Etθt+1, (A.22)

where in equation (A.21) we use that R∗t = β−1 remains in steady state throughout. Up to

this point, the incomplete markets and the complete markets model coincide except for the

endogenous discount factor in equation (A.20) (in contrast, equations (A.21) and (A.22) are

also part of the complete markets model—see equations (4.4) and (3.6)).

The key difference between the two models arises because the risk sharing condition (A.7)

and hence condition (3.3) are not part of the equilibrium. Instead, we keep track of net foreign

assets via the aggregate resource constraint

PtCt + (R∗t )
−1EtD∗t+1 = PH,tYt + EtD∗t ,

where we have used the price indexes and consumption-demand functions from the main text

to rewrite
∫ 1
0 PH,t(i)CH,t(i)di+

∫ 1
0 PF,t(i)CF,t(i)di = PtCt, where we have used the equilibrium

expressions for profits Yt = PH,tYt −WtHt and replaced the government budget constraint

I−1t Bt+1 = Bt(1 − Θt) − Ptτt. Note that, as government debt and taxes drop out of the

household budget constraint, Ricardian equivalence always obtains in this model. We divide
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both sides by Pt to re-write this as

Ct + (R∗t )
−1QtD

∗
t+1 =

PH,t
Pt

Yt +QtD
∗
t ,

where we have inserted the real exchange rate Qt = Et/Pt (recall that P ∗t = 1 by our normal-

ization). This expressions shows how a real depreciation (a rise in Qt) harms consumption to

the extent that net foreign assets are negative (D∗t < 0)—the balance sheet effect of depreci-

ation.

If net foreign assets are zero in steady state, the balance sheet effect drops out up to first

order. Instead, we linearize around D∗/P ≡ λ∗ = −1.177—which corresponds to 30% net for-

eign debt to GDP in steady state—to generate large balance sheet effects from depreciation.25

From the last equation, this implies C 6= Y , such that the linearization is around a different

steady state than in the complete markets model. To make results comparable, we keep the

assumption of linearizing around a steady state of purchasing power parity: Q = 1, implying

that also PH/P = 1. The previous budget constraint then implies that C = Y + (1 − β)λ∗,

where we use that R∗t = 1/β.26 We therefore obtain

β(d∗t+1 + qtλ
∗) + Cct = Y (yt + pH,t − pt) + d∗t + qtλ

∗, (A.23)

where Y = ((γ − 1)/γ)1+ϕ is pinned down by the supply side of the model, and where C was

given above. Finally, the demand side of the economy must also be adjusted, such that goods

market clearing (A.10) needs to be replaced by

Y yt = (1− ω)Cct − ((1− ω)C + ωC∗)σ(pH,t − pt) + C∗ωσqt + µt, (A.24)

where C∗ is pinned down by Y = (1−ω)C+ωC∗, and where µt is the demand shock as before.

All remaining equations are unchanged from the baseline model. The incomplete markets

model is as a set of variables {yt, πH,t, pH,t, πt, pt, et, qt, it, rt, d∗t+1, bt+1, θt, wt, ht,mct, ct} that

satisfy the sixteen equations (A.6), (A.8)-(A.9), equation (A.24), equations (A.11)-(A.13),

one of the two policy rules (A.14)-(A.15), equations (A.16)-(A.17), one of the two policy

rules (A.18)-(A.19), equations (A.20)-(A.21) and (A.23), and the definitions for inflation

πH,t = pH,t − pH,t−1 and πt = pt − pt−1, for given initial b0 and d∗0.

25To obtain this number, we compute λ∗ = −0.3× Y × 4, where Y = ((γ − 1)/γ)1+ϕ is quarterly output in
steady state.

26The reader may wonder how it is possible to assume that purchsing power parity holds in the steady state.
From the demand function in steady state, Y = (1 − ω)C + ωC∗, the underlying assumption is that foreign
consumption C∗ must adjust. We thus treat C∗ as an additional parameter.
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B Appendix: Propositions

B.1 Propositions 1-2

Here we provide the proof of Propositions 1-2. Consider the model in Section 3, but impose

flexible prices ξ = 0. In this case the model collapses to

rt = EtπH,t+1 (B.1)

et = pH,t (B.2)

βbt+1 = (1− ψ)bt + λ(βit − πH,t − θt) (B.3)

it = rt + Etθt+1 (B.4)

as well as yt = qt = 0 and policy rt = φπH,t or et = 0, and bt+1 = 0 or θt = 0. We solve the

model backwards by using the method of undetermined coefficients, thereafter we show that

the solution derived is mean square stable whenever condition (4.2) holds.

In regime Reform, et = 0, such that from (B.2) pH,t = 0 and therefore πH,t = 0. Since

θt = 0 in this regime, and further regime change is ruled out, rt = it = 0 from (B.1) and

(B.4). Public debt hence evolves according to

βbt+1 = (1− ψReform)bt,

and is mean-reverting by assumption (ψReform > 1− β).

Regime Default is identical to regime Reform, expect that fiscal policy is “active” such

that debt has an explosive root (ψ < 1−β by assumption). As a result, default θt must adjust

such that bt+1 = 0 at all times, as argued in the main text. Hence the solution is et = 0,

pH,t = 0 and therefore πH,t = 0 as before, as well as θt = ((1 − ψ)/λ)bt in the period upon

entering the regime, as well as bt+1 = 0 and θt+1 = 0 in all periods thereafter.

There is no default in regime Exit, thus it = rt from equation (B.4). By contrast, generally

et = pH,t 6= 0 in this regime. The system (B.1)-(B.4) can be re-written as

φπH,t = EtπH,t+1

βbt+1 = (1− ψ)bt + λ(βφ− 1)πH,t.

It features one forward looking (πH,t), one backward looking variable (bt+1). As can be easily

checked, in spite of ψ < 1− β, the system exhibits bounded dynamics if the Taylor principle

does not hold φ < 1 (Leeper, 1991). A guess and verify approach yields
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(∆et =) πH,t =
1− ψ − βφ
λ(1− βφ)

bt, bt+1 = φbt.

In the main text, we show the special case of these equations when ψ = 0.

In the initial regime Crisis, et = 0 and hence pH,t = 0 and πH,t = 0 from equation (B.2).

However, generally rt 6= 0 because of expected changes in inflation and nominal depreciation

(equations (B.1) and (B.2)), and it 6= 0 because of (in addition to the variation in rt) expected

outright default (equation (B.4)). Moreover, movements in the bond yield it feed back into

bt+1 through equation (B.3).

By using the Markov chain we can write equation (B.3) as

it =

[
ε

1− ψ − βφ
λ(1− βφ)

+ δ
1− ψ
λ

]
bt+1, (B.5)

where we have used the equilibrium default and nominal depreciation rates from regimes

Default and Exit. Insert this into (B.3)

βbt+1 = (1− ψ)bt + λβit

and rearrange for bt+1 to obtain

bt+1 = (1− ψ)
1

β

(
1− ε

(
1− ψ − βφ

1− βφ

)
− δ(1− ψ)

)−1
bt =: (1− ψ)Θbbt

for public debt, and

it = (1− ψ)(Θθ + Θr)bt,

where Θθ = δ(1− ψ)
Θb

λ
> 0 and Θr = ε

(
1− ψ − βφ

1− βφ

)
Θb

λ
> 0,

for the sovereign yield. In the main text, we show the special case of these two equations as

ψ = 0. This completes the proof of Proposition 2.

Now turn to stability, which is Proposition 1. It is clear that the stability of the overall

system hinges on the stability of its endogenous states, which are only bt when prices are

flexible. In this case, the general condition characterizing mean square stability, which is that

all eigenvalues of

(P ′ ⊗ In2)diag(Fς1 ⊗ Fς1 , ..., Fςh ⊗ Fςh)

must lie within the unit circle (n denoting the number of endogenous variables, h the number

of regimes, F the solution matrices in the respective regimes, see the main text), reduces to

8



the simple condition that all eigenvalues of
1− f − δ − ε 0 0 0

f 1 0 0

δ 0 1 0

ε 0 0 1





(
1

β(1−δ−ε)

)2
0 0 0

0
(
1−ψReform

β

)2
0 0

0 0 0 0

0 0 0 φ2

 (B.6)

must lie within the unit circle. Because the target regimes are absorbing and the matrix on

the right hand side is diagonal, a sufficient condition for this is that

(1− f − δ − ε)
(

1

β(1− ε− δ)

)2

< 1.

which is equation (4.2) in the main text. This completes the proof of Proposition 1.

B.2 Proposition 3

Here we derive the solution of the sticky price model shown in Section 4. To do so, we make a

number of parametric assumptions. First and most importantly, we require that f+δ+ε = 1,

that is, agents expect the first regime to persist with probability zero. Second, we set ϕ = 0,

that is, we impose a linear disutility of labor. Third, we impose ψ = 0 such that taxes do not

systematically respond to debt in the crisis regime, as well as κ = 1 − β, i.e. that the slope

of the Phillips curve relates in a particular way to the discount factor. The first assumption

is strictly needed for a derivation of closed form results to be feasible. In contrast, the last

three assumptions simplify the exposition.

We solve the model backwards using the method of undetermined coefficients. For conve-

nience, we repeat the relevant system of equations

yt = Etyt+1 −$(rt − EtπH,t+1) (B.7)

πH,t = βEtπH,t+1 + κ(ϕ+$−1)yt, (B.8)

(1− ω)yt = $qt, (B.9)

qt = (1− ω)(et − pH,t) (B.10)

βbt+1 = (1− ψ)bt + λ(βit − πH,t − θt), (B.11)

it = rt + Etθt+1 (B.12)

along with the definition for inflation πH,t = pH,t − pH,t−1. Furthermore, differing across

regimes are the conduct of monetary policy

et = 0 or rt = φπH,t (B.13)
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and the rate of equilibrium default

θt = 0 or bt+1 = 0. (B.14)

Starting with regime Reform, it holds that et = θt = 0 and that ψReform > 1 − β. We

also derive that yt = −$pH,t from (B.9)-(B.10). Inserting this in (B.8) allows us to derive a

second order difference equation in the price level

βpH,t+1 = (1 + β + κ$(ϕ+$−1))pH,t − pH,t−1.

Guessing that pH,t = GpppH,t−1 for some unknown coefficient Gpp we obtain the restriction

1 = Gpp(1 + (1−Gpp)β + κ$(ϕ+$−1)). This is a quadratic equation in Gpp with one root

inside the unit circle. To obtain this root we rewrite this as

(1− βGpp)(1−Gpp)
Gpp

= κ$(ϕ+$−1).

Recognizing that κ ≡ (1− βξ)(1− ξ)/ξ reveals that, once we impose our assumption ϕ = 0,

the solution is Gpp = ξ < 1, where ξ is the price-stickiness parameter. We now determine the

equilibrium behavior of interest rates and public debt. First, combining (B.7), (B.9)-(B.10)

yields rt = ∆et+1, such that rt = 0 in this regime. Second, it follows that it = 0 from (B.12)

as there is no possibility of default. The equilibrium behavior of debt can now be derived

from (B.11)

bt+1 =
1− ψReform

β
bt +

λ(1− ξ)
β

pH,t−1,

where we have inserted the solution for pH,t. This is a stable difference equation, because of

our assumption ψReform > 1− β above.

The solution for the price level is the same in regime Default, given that et = 0 holds

in this regime, too. As a result, it also holds that rt = 0. Instead, θt is generally non-zero.

Because bt+1 = 0 at all times in this regime, it must be that

0 = (1− ψ)bt + λ(βθt+1 + (1− ξ)pH,t−1 − θt),

where we have used that it = θt+1 under rt = 0, see equation (B.12). This is a first order

difference equation in θt, for given states bt and pH,t−1. To solve it, we guess that θt =

Gθbbt +GθppH,t−1 for coefficients Gθb and Gθp to be determined. Note that, at time t+ 1, the

guess reduces to θt+1 = GθpξpH,t−1, where we have used that bt+1 = 0 and that pH,t = ξpH,t−1.

Inserting this in the previous equation yields

0 = (1− ψ)bt + λ(βGθpξpH,t−1 + (1− ξ)pH,t−1 − (Gθbbt +GθppH,t−1)),
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which reveals that Gθb = (1− ψ)/λ and that Gθp = (1− ξ)/(1− βξ).

In regime Exit we use that rt = φπH,t and that θt = 0. We solve the two by two system

yt = yt+1 −$(φπH,t − πH,t+1)

πH,t = βπH,t+1 + κ$−1yt,

along with the evolution of debt

bt+1 =
1− ψ
β

bt +
λ(βφ− 1)

β
πH,t.

Guess that πH,t = Gπbbt and yt = Gybbt for coefficients Gπb and Gyb to be determined. We

obtain the two restrictions

Gyb[1− (1− ψ)/β − (λ(βφ− 1)/β)Gπb] +Gπb$[φ− (1− ψ)/β − (λ(βφ− 1)/β)Gπb] = 0

Gπb[1− (1− ψ)− λ(βφ− 1)Gπb]− κ$−1Gyb = 0.

Solving the second equation for Gπb$[−(1−ψ)/β−(λ(βφ−1)/β)Gπb] = (κ/β)Gyb−($/β)Gπb

and replacing in the first equation yields

Gyb[1− (1− ψ)/β − (λ(βφ− 1)/β)Gπb] +Gπb$(φ− 1/β) + (κ/β)Gyb = 0

⇔ Gyb[κ− (1− β − ψ)− λ(βφ− 1)Gπb] +Gπb$(βφ− 1) = 0.

Because we assume that κ = 1− β − ψ (which is implied by our assumptions κ = 1− β and

ψ = 0), this equation reduces to

Gπb(βφ− 1)[$ − λGyb] = 0

which reveals that Gyb = $/λ. Using this information we can use the second restriction above

to obtain a quadratic equation for Gπb as

G2
πb +

ψ

λ(1− βφ)
Gπb −

κ

λ2(1− βφ)
.

The two roots of this equation are

Gπb = − ψ

2λ(1− βφ)
±

√
ψ2

4λ2(1− βφ)2
+

κ

λ2(1− βφ)

Under our assumption ψ = 0 the single positive root is Gπb =
√
κ/(1− βφ)/λ. Hence we

have verified that equilibrium output and inflation evolve as πH,t = (
√
κ/(1− βφ)/λ)bt and

yt = ($/λ)bt. Inserting this into the equation for debt above

bt+1 = (1/β)bt + (1/β)λ(βφ− 1)(
√
κ/(1− βφ)/λ)bt

= (1/β)(1− (1− βφ)
√
κ/(1− βφ))bt.
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Because of κ = 1− β, it holds that 1−
√
κ < β. Furthermore, necessarily 1− βφ < 1. From

this follows that the coefficient on debt is smaller than one, such that debt is indeed mean

reverting after exit.

Finally, in the initial regime Crisis we use our assumption on the transition probabilities.

Because et = 0 in this regime we again write the difference equation

βEtpH,t+1 = (1 + β + κ)pH,t − pH,t−1

β[(f + δ)pH,t+1|Reform + εpH,t+1|Exit] = (1 + β + κ)pH,t − pH,t−1,

where we have evaluated the expectations operator using that f + δ + ε = 1, used that

pH,t+1 is the same in both Reform and Default (see the earlier derivation), and where we

have imposed our assumption ϕ = 0. Inserting the solutions pH,t+1|Reform = ξpH,t and

pH,t+1|Exit = pH,t + (
√
κ/(1− βφ)/λ)bt+1 we rewrite this as

β[(f + δ)ξpH,t + ε(pH,t + (
√
κ/(1− βφ)/λ)bt+1)] = (1 + β + κ)pH,t − pH,t−1. (*)

To evaluate this further, we require the equilibrium behavior of bt+1. Public debt is given by

βbt+1 = bt + λ(βit − (pH,t − pH,t−1)),

where we have used our assumption ψ = 0 and the fact that θt = 0. The evolution of it is

obtained from (B.12). Using that rt = Et∆et+1 we have

it = rt + Etθt+1 = Et(∆et+1 + θt+1)

= εet+1|Exit + δθt+1|Default

= ε[(1/$)yt+1|Exit + pH,t+1|Exit] + δθt+1|Default.

Here we have used that et = 0 in the initial regime and combined equations (B.9)-(B.10) to

replace et+1. Inserting our solutions pH,t+1|Exit = pH,t + (
√
κ/(1− βφ)/λ)bt+1, yt+1|Exit =

($/λ)bt+1 as well as θt+1|Default = (1/λ)bt+1 we rewrite this further as

it = ε{[(1/λ) + (
√
κ/(1− βφ)/λ)]bt+1 + pH,t}+ δ(1/λ)bt+1

such that public debt can be written as

βbt+1 = bt + β[ε{[1 +
√
κ/(1− βφ)]bt+1 + λpH,t}+ δbt+1]− λ(pH,t − pH,t−1)

⇔ (β[1− ε(1 +
√
κ/(1− βφ))− δ])bt+1 = bt − λ(1− βε)pH,t + λpH,t−1. (**)
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Combining equations (*) and (**) yields the solution for pH,t and bt+1 in the initial regime.

Here we merely state the solution for the price level

([1− ε(1 +
√
κ/(1− βφ))− δ][ξ−1 − βε(1− ξ)] + ε(1− βε)

√
κ/(1− βφ))pH,t

= ε(
√
κ/(1− βφ)/λ)bt + (1− ε− δ)pH,t−1,

where we have used that ξ(1 + β(1− ξ) + κ) = 1. We simplify this a bit further to obtain

((1− ε− δ)(1− βεξ(1− ξ))− ε
√
κ/(1− βφ)(1− ξ(1− βεξ))pH,t

= εξ(
√
κ/(1− βφ)/λ)bt + (1− ε− δ)ξpH,t−1.

Note how this nests the case of ε = 0: in this case, the price level reverts at the speed of

the Calvo parameter pH,t = ξpH,t−1 (as in regimes Reform and Default). The solutions for

the real exchange rate and for output follow directly from this equation, from the fact that

et = 0 in the initial regime, hence qt = −(1 − ω)pH,t, then from the risk sharing condition

(1− ω)yt = $qt,, which is equation (B.9). This completes the proof of Proposition 3.

C Appendix: Additional robustness

In this Appendix, we present two additional robustness checks of our quantitative analysis,

which complements the results from Section 5.4 from the main text.

In a first experiment, we continue to assume that financial markets are incomplete (as in

robustness exercise 2 in the main text), and in addition relax the assumption that there are

no resource costs of default. Such costs feature prominently in quantitative sovereign default

models (e.g. Arellano, 2008). We therefore assume that there is a persistent resource loss in

the domestic economy that is proportional to the size of the haircut. Specifically, we assume

an impact-loss of 10 percent of output due to the default. We assume this output loss to be

autocorrelated with a persistence parameter of 0.9. The (black) dotted lines with pluses in

Figure 6 show the result: the country suffers from an additional output contraction, although

this effect is moderate. More striking is that the real exchange rate depreciates faster after

default and public debt and deficits are larger in the scenario with default costs.

In a second experiment, we allow for the possibility that foreign interest rates decline in

the wake of the Greek sovereign debt crisis. This is meant to capture a possible response of

monetary policy at the union level. In this robustness, rather than treating foreign interest

rates r∗ as a constant, we model them as a stochastic process: we assume that r∗t follows a

random walk. We then treat the process {r∗t } as an additional observable, as we match the

ECB’s main refinancing rate during our sample period. We find that yields, debt to GDP and

13
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Figure 6: Macroeconomic performance in Greece, baseline under incomplete markets (red
solid line) and robustness. Robustness exercise 1: costly default (black dotted line with
pluses). Robustness exercise 2: response of union-wide interest rate (black dashed line).

deficits to GDP are somewhat lower during the crisis phase, and that the output contraction

is less severe (see the black dashed lines in Figure 6).
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